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ABSTRACT
Nondominated sorting and diversity estimation procedures
are an essential part of many multiobjective optimization
algorithms. In many cases these procedures are the com-
putational bottleneck of the entire algorithm. We present
the methods to decrease the cost of these procedures for
multiobjective differential evolution (DE) algorithms. Our
approach is to compute domination ranks and crowding dis-
tances for the population at the beginning of the algorithm
and use a combination of well known data structures to effi-
ciently update these attributes. Experiments show that the
cost of improved nondominated sorting is sub-quadratic in
the number of individuals. In practice using our methods
the overall DE algorithm can run 2 to 100 times faster.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations; G.1.6 [Numerical Analysis]:
Optimization—Global optimization

General Terms
Algorithms, Performance

Keywords
differential evolution, nondominated sorting, crowding dis-
tance, many-objective optimization, K-d tree, skip list

1. INTRODUCTION
Many multi-objective evolutionary optimization algorithms

(MOEAs) rank individuals based on Pareto optimality and
diversity estimation procedures. These two procedures are
computationally expensive, especially for large populations
and high dimensional objective spaces.

For example, we profiled the computational cost of GDE3[9],
a differential evolution[10] MOEA, using a population size
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of 1000 individuals, optimizing a DTLZ4 problem[4] with 5
objectives and 20 variables. We found that 98% of the total
computational cost is attributed to nondominated sorting
and crowding distance, less than 1% to the objective func-
tion, and the rest were recombination and system activities.

The high computational cost of Pareto based methods has
motivated research to find ways to reduce it.

The first improvement of the naive nondominated sorting
method is due to Deb et al.[3] The fast nondominated sorting
method improves the naive method by a factor roughly equal
to the number of nondominated fronts in the population.

A sophisticated computation complexity reduction of the
nondominated sorting has been achieved by Jensen[6]. Jensen
also pointed out that the usage of more elaborate data struc-
tures to hold the population can be used to reduce the com-
plexity of both nondominated sorting and diversity estima-
tion. Other improvements in the computational complex-
ity of diversity estimation have been achieved by Kukkonen
and Deb, first for bi-objective problems [7], and then for any
number of objectives [8].

All these complexity reductions can be applied to any evo-
lutionary algorithm which uses nondominated sorting or di-
versity estimation. However, to our knowledge, there have
not been published any results exploiting characteristics ex-
clusive to differential evolution (DE) algorithms.

In this work, we improve the computational complexity of
differential evolution MOEAs. We propose a strategy which
exploits the survival selection properties of DE to decrease
the complexity of nondominated sorting and diversity es-
timation. To this end we use a special data structure to
manage the nondominated individuals. We test the pro-
posed strategy on GDE3[9], showing that the improved DE
algorithm can run 2 to 100 times faster.

2. MULTIOBJECTIVE
DIFFERENTIAL EVOLUTION

2.1 Basic concept
DE is an evolutionary algorithm developed by Storn et

al.[10] Although originally developed for single objective op-
timization, it can be easily extended to multiple number of
objectives. Notable examples are by Kukkonen[9] and Robič
and Filipič[12].

DE tries to improve the population one individual at a
time. It does so by looping through the population in what
we call a generational loop and creating a new trial individ-



ual1 for each target individual in the population. Instead
of waiting until all the trials are generated, their objective
value is evaluated immediately and they are compared for
domination with the target. The detailed procedure is de-
scribed in Algorithm 1.

Algorithm 1: multiobjective DE

initialize population P = {X1, ..., XN};
for g := 1 to Gmax do Evolutionary loop

for i := 1 to N do Generational loop
target := Xi ;
trial := generate trial(i) ;
if target dominates trial then

discard trial ;
end
if trial dominates target then

replace target with trial ;
end
if mutually nondominated then

add trial to the end of the population ;
end

end
Trim the population to size N using nondominated
sorting and diversity estimation ;

end

At the end of the generational loop the population size is
between N and 2N . The size is reduced back to N before
proceeding to the next generation. This is done by the com-
putationally expensive nondominated sorting and diversity
estimation. We will build methods to dissipate the cost of
these procedures throughout the generational loop.

2.2 Paradigm and notation
We improve DE algorithms conforming to the Algorithm 1.

Also, for concepts pertaining to DE, we use the same nota-
tion as in [10] in the rest of the text. Furthermore we assume
minimization at all times. N stands for the initial popula-
tion size, M denotes the number of objectives, the objective
functions will be called fi, and Xi will denote a vector in
Rn also called an individual.

As we can see in Algorithm 1, an important difference
between DE and MOEAs such as NSGA-II[3] is that the
selection process in DE is gradual and much of the selection
happens intermittently with generation of new individuals,
during the generational loop. We exploit this characteristic.

3. PROPOSED METHOD TO REDUCE THE
COST OF NONDOMINATED SORTING

3.1 Motivation
When using evolutionary algorithms to solve problems

with 3 and more objectives, there is a tendency for a large
proportion of the population to become nondominated[1].
This phenomenon is informally called the the curse of di-
mensionality. This is quite a general notion, so in the rest of
this paper we shall call the previously described phenomenon
overnondomination.

1This is analog to the offspring in classical MOEA termi-
nology.

Our idea is to take advantage of the overnondomination.
When there are more than N nondominated individuals at
the end of the generational loop we can pick the N individ-
uals that will survive into the next generation from these
individuals. Our method is to determine right at the start
of the algorithm which individuals are nondominated and
update this information after each change to the population.

This is a drastic deviation from the standard approach
which is to compute the nondominated fronts at the end of
each generation. We can do this only because DE alters
population one individual at a time, so there are no sudden
changes to the population. Thanks to the overnondomina-
tion, this approach can eliminate the need for nondominated
sorting entirely.

In the cases when there are less than N nondominated in-
dividuals, that is when the overnondomination is not signif-
icant enough, we can fall back to fast nondominated sorting.

During the generational loop the population changes if
and only if we replace the target with trial or insert the trial.
Keeping track of the nondominated individuals in face of
such a rapid fluctuation can get computationally expensive.
In the next sections, we describe an efficient process to up-
date our knowledge of the nondominated individuals.

3.2 Geometry of nondominated sorting
Let us look at the first of the two possible changes of the

population, that is replacing a target with a dominating trial
in Figure 1. Let us suppose that the target is nondominated.
This is a realistic assumption, since almost all the individu-
als are nondominated throughout the run of the algorithm.

Figure 1: Replacement of Target

After the replacement, we need to update our knowledge
of the nondominated individuals. Without any computa-
tion, we know that the trial is nondominated since it dom-
inates a previously nondominated target. However, we still
need to find out if some of the nondominated individuals
have become dominated by the newly inserted trial.

In Figure 1 we see that the trial dominates other two
individuals besides the target. We need to find these two
individuals and update their status to “dominated”. Check-
ing with each nondominated individual is out of the ques-
tion. We need to perform this check up to N times per
generation and because of overnondomination there are rel-
atively many nondominated individuals to compare with.
This naive strategy would lead us back to the O

(
N2
)

com-
plexity of the fast nondominated sorting.



Instead of doing domination comparisons, let us try to
construct the set of the individuals dominated by the trial.
In Figure 2 we see the area dominated by the trial individual.
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Figure 2: Finding individuals dominated by Trial

We need to find the individuals in this area. Since we are
interested only in nondominated individuals we know that
there are no individuals of interest in the set dominated
by the target. Subtracting the portion of R2 dominated
by the target leaves us only two narrow stripes to search.
Mathematically, we just need to find the individuals X for
which:

f1 (X) ∈ [f1 (trial) ; f1 (target)] (1)

∨
f2 (X) ∈ [f2 (trial) ; f2 (target)] (2)

The second of the two possible changes of the population
is the insertion of a trial individual without removing the
target individual such as in Figure 3.

Figure 3: Insertion of nondominated Trial

In this case we are not sure if the trial is nondominated.
Also, there is a possibility, that the trial dominates some
previously nondominated individual. We need to investigate
both possibilities.

Again, rather than checking with each nondominated in-
dividual, we construct the set of all the individuals which
are dominated by the trial and the set of individuals which
dominate the trial. We do this analogically by subtracting
the areas which are dominated by or dominating the target
from the areas which are dominated by or dominating the
trial respectively. This is illustrated in Figure 4.
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Figure 4: Finding individuals dominated by and
dominating Trial

We can see that the sets of interest are restricted to rela-
tively small parts of the objective space:

Set of individuals which are dominated by trial ⊆
{X|f1 (X) ∈ [f1 (trial) ; f1 (target)]} (3)

Set of individuals which dominate trial ⊆
{X|f2 (X) ∈ [f2 (target) ; f2 (trial)]} (4)

Instead of comparing the trial individual with each non-
dominated individual, we just compare with the individuals
in (3). Then we determine the individuals in (4). If this
set is empty, or if there have already been some individuals
dominated by the trial, we know that the trial is nondomi-
nated. Otherwise we compare with individuals in (4).

3.3 Reference sets and reference individuals
We shall now proceed to generalize the ideas of the previ-

ous section. We were examining the changes to a nondomi-
nated population P when a new trial individual t has been
introduced into the population either as a replacement for
a target or merely a new member of the population. We
were also using the concept of a target individual. However
we did not assume about the target anything besides non-
dominatedness, so we shall generalize the notion of target
individual to that of a reference individual.

We shall generalize our concepts to more than 2 dimen-
sions.

Definition 1. Let P = {X1, ..., XN} be a population,
whose individuals are all mutually nondominated and let t
be a newly created trial individual. Let r be an arbitrary
individual from P .

We define the upper reference set for individual t induced
by individual r, to be the set RU (t, r) ⊆ P given by:

RU (t, r) =

M⋃
i=1

{Xj such that fi (t) ≥ fi (Xj) ≥ fi (r)}

(5)



Conversely, we define the lower reference set for individual
t induced by individual r, to be the set RL (t, r) ⊆ P given
by:

RL (t, r) =

M⋃
i=1

{Xj such that fi (t) ≤ fi (Xj) ≤ fi (r)}

(6)

This is a direct generalization of (3) and (4). In fact (3) is
the lower reference set for the trial individual induced by the
target RL (trial, target) and (4) is the upper reference set
RU (trial, target). In Figure 1 the three individuals domi-
nated by the trial and the target are the lower reference set
RL (trial, target). The upper reference set contains only the
target.

We shall call the individual r which induces the reference
sets reference individual. The next section will pay more
attention to the selection of the reference individual.

The next observation proves, that the upper and lower
reference sets contain all the individuals that dominate or
are dominated by the trial respectively.

Observation 1. Let P = {X1, ..., XN} be a population,
whose individuals are all mutually nondominated and let r ∈
P be an arbitrary individual. Let t be a newly created trial
individual. Then if t dominates some Xj ∈ P then Xj ∈
RL (t, r).

In other words, all the individuals dominated by t are in
RL (t, r)

Proof. We shall prove that:

t dominates some Xj ∈ P ⇒
∃i ∈ {1, . . . ,M} such that

fi (t) < fi (r) ∧ fi (Xj) ∈ [fi (t) ; fi (r)]

which together with (6) implies that Xj ∈ RL (t, r).
We do a proof by contradiction. First let us prove that

there is an i for which fi (t) < fi (r) holds. Let us suppose
that the negation is true: ∀i ∈ {1, . . . ,M} fi (t) ≥ fi (r).
Since t dominates Xj , there is an index I for which fI (Xj) >
fI (t). That means:

∀i; fi (Xj) ≥ fi (t) ≥ fi (r)∧
∃I; fI (Xj) > fI (t) ≥ fI (r)

This means that r dominates Xj which contradicts the as-
sumption that all the individuals in P are mutually non-
dominated.

Let us now suppose that for all i for which fi (t) < fi (r)
holds, the negation of fi (Xj) ∈ [fi (t) ; fi (r)] is true. That
is fi (Xj) < fi (t)∨fi (Xj) > fi (r). We know that fi (Xj) <
fi (t) cannot hold, since t dominates Xj . That means

fi (t) < fi (r)⇒ fi (Xj) > fi (r) (7)

For all the i for which fi (t) < fi (r) does not hold, we have
fi (Xj) ≥ fi (t) ≥ fi (r) since t dominates Xj . Combine
this with (7) to get that r dominates Xj which is again a
contradiction with the assumption of the theorem.

Analogically we can prove the statement for upper refer-
ence sets.

Observation 2. Let the assumptions of observation 1 hold.
Then if t is dominated by some Xj ∈ P then Xj ∈ RU (t, r).

The purpose of the reference sets is to diminish the num-
ber of domination comparisons needed when we add a new
individual into the population. Each time the population is
changed, the new individual does not need to be compared
to all the nondominated individuals for domination. We just
compare with individuals in the reference sets.

4. IMPLEMENTATION

4.1 M-list
In this section we describe how to efficiently implement

the method proposed in the previous section. In order to be
able to construct the upper and lower reference sets quickly,
we propose to keep the nondominated individuals in a special
data structure. If we look at the definition of the lower
reference set (6), we see that the reference set is a union
of one dimensional interval queries of the population. That
means we need a structure which supports quick queries of
all the values which lie in a given interval.

One of many such structures is the skip list[11]. This
structure answers such queries in time O (ln (n) + k) where
n is the number of items in the list and k is the number of
items to report. We need to be able to make queries with
respect to any objective, so we actually need M skip lists.
One for each objective. We call the structure consisting of
M skip lists, each sorted by one objective and each holding
exactly the nondominated individuals an M-list.

Figure 5 is an illustration of a 3-dimensional M-list holding
6 mutually nondominated individuals and a newly inserted
trial. We want to know the individuals dominated by the
trial. To do this we construct a lower reference set (6). In
this case we choose the reference set induced by the target
RL (trial, target)

Figure 5: Insertion of a dominating trial into an M-
list

To construct RL (trial, target), we gather all the individ-
uals which lie between the trial and the target including the
target. In this case it is the set RL = {X3, X5, X6} ∪ {X4}.
By comparing each individual from RL to the trial, we find
that X5 and X6 are dominated by the trial. So we discard
them and the target X4 from the M-list.

When we insert a trial which is nondominated with the
target, we need to determine two things:

1. Is the trial nondominated?



2. Are some currently nondominated individuals domi-
nated by trial? 2

We determine this by constructing both the upper and
lower reference sets for the trial. The process is illustrated
in figure 6. We see that the closer the trial and target are,

Figure 6: Construction of lower and upper reference
sets when inserting a nondominated trial

the less individuals we need to compare. Therefore it is
useful to choose the reference individual as close as possible
to the trial. This leads us to the following topic.

4.2 Selection of the reference individual
Any nondominated individual can be chosen as the ref-

erence individual. But we would like the reference sets to
be as small as possible. This happens when the reference
individual is relatively close to the trial. Here we propose
strategies to select the reference individual:

Target reference: If the crossover probability Cr is low,
then the trial inherits almost all the parameters from target
and therefore should be close to the target. In case the target
is dominated and therefore not in the M-list, we suggest that
reference individual is chosen from the M-list randomly.

Base reference: The target vector need not be likely close
to the trial. This is especially true when the Cr is high. In
this case, there is also an individual which is likely to be close
to the trial. It is the base individual [10]. The individual to
whom the scaled difference of two individuals is added.

Closest to trial : To compute the closest individual in M-
list to the trial should result in a relatively small reference
set. The downside is the computation cost, but some al-
gorithms such as DEMO[12] already compute the closest
individual, so it is worthwhile to use the result of this com-
putation for this purpose too.

The properties of the various strategies are summarized
in Table 1.

4.3 K-d tree
Since the update of the population happens N times per

generation, the O (N) time to compute the nearest neighbor
is unacceptable. However the nearest neighbor problem is
a heavily researched subject. Using simple data structures,
we can solve the nearest neighbor problem in sub linear time

2Luckily 2 ⇒ 1 which is equivalent to ¬1 ⇒ ¬2. So if we
implement the program to check 1 and then 2, we do not
need to check 2 in cases, where 1 is false and conversely, if
we check 2 and then 1, each time 2 evaluates to true, we
know that 1 is also true.

Table 1: Reference individual strategies summary
Strategy Cost Useful when

Target O (1) Cr small
Base O (1) Cr large F small
Closest to trial O (N) always

for dimensions up to approximately 8 and we can compute a
very quick and a very accurate approximate nearest neighbor
up to about 20 dimensions.

K-d tree[2] is one of many structures designed to man-
age vector data and offer fast nearest neighbor search. The
properties of a K-d tree are summarized in Table 2.

Table 2: K-d tree properties
Operation Average cost

Construction O (n ln (n))
Insertion O (ln (n))
Deletion O (ln (n))
Exact nearest neighbor O (ln (n))
Approximate nearest neighbor O (ln (n))

The problem is that the tree gets unbalanced after a large
amount of insertions and deletions. Luckily, the tree is cheap
to rebuild and the rebuilding is much faster, if we have the
data sorted according to each dimension. That is the case
with the M-list. It is therefore a good idea to manage both
the K-d tree and M-list.

In our experiments we construct the K-d tree directly from
the M-list once the cumulative number of insertions and
deletions gets bigger than two times the size of the primary
population N .

5. COMPUTATIONAL COMPLEXITY

5.1 Diversity estimation
The M-list is an appropriate structure to compute the

crowding distance (CD). Since the population is already or-
dered with respect to all the objectives, the computation
cost of CD equals to that of traversing the M-list which is
O (MN). This improves the original O (MN ln (N)). The
M-list is also very useful for algorithms which update the
CD after they remove one individual3 since this update is
possible in O (M).

5.2 Nondominated sorting
The computational complexity of known methods is sum-

marized in Table 3. The operation, whose cost is measured
is the comparison between two real numbers. Therefore the
cost of dominance comparison is O (M).

The computational complexity of our method depends
very much on the quality of the reference individual. The
closer it is to the trial individual, the smaller is the reference
set and the smaller is the number of individuals that need
to be compared.

First, let us derive the worst case complexity. To do
that we just need to realize that our algorithm can make as
many comparisons as the fast nondominated sorting. That
is O

(
MN2

)
. The overhead of updating an M-list does not

3Such as GDE3[9]



Table 3: Summary of computational complexities of
nondominated sorting methods

Deb Jensen Our method

worst O
(
MN2

)
O
(
N lnM−1 (N)

)
O
(
MN2

)
average O

(
MN2

)
O
(
N lnM−1 (N)

)
O
(
M2Ng (N)

)
best O

(
MN2

)
O
(
N lnM−1 (N)

)
O (MN)

M− number of objectives
N− population size

g (N)− average number of individuals
between the trial and reference
individual with respect to one objective.
In the next section, g is estimated
to be g (N) ≈ αNβ ; β ∈ [0.6; 1]

make a difference since insertions and deletions in the M-list
are both O (M ln (N)) operations. There can be only O (N)
updates which leads to only O (MN ln (N)) cost.

In the best case, the reference individual is chosen so luck-
ily, that the reference sets generated by it contain only the
reference individual. In this case there is only one compari-
son for each reference set and therefore only O (N) compar-
isons per generational loop. Multiplied by O (M) we get a
complexity of O (MN).

To get the average case, we make only a rough“back of the
envelope” estimate. Each new individual needs to be com-
pared to the individuals in the upper and lower reference
set. Let us suppose that on average there are g (N) individ-
uals between the trial and reference individual with respect
to each objective. Further let us suppose, that the individu-
als that are between the trial and reference individual with
respect to one objective are not between the trial and refer-
ence individual with respect to any other objective. We see
in Figure 6 that the number of individuals in both upper and
lower reference sets combined is Mg (N). Multiplying this
by O (N) population updates we get O (MNg (N)) domi-
nation comparisons. That is O

(
M2Ng (N)

)
real number

comparisons.

6. EXPERIMENTAL RESULTS

6.1 Common setup
In the entire section, we will be comparing the improved

version of the GDE3[9] algorithm with the original one. We
have implemented both algorithms using C++, following the
description of the algorithm in [9].

For all experiments we have used exponential crossover[10].
The parameters which are same for all further experiments
are summarized in Table 4. This used combination of pa-
rameters for GDE3 proved to be most universal after some
calibration.

Table 4: Experimental setup
Problems DTLZ1, WFG9

F mutation factor 0.2
Cr crossover probability 0.2
Number of generations Gmax 1000
Number of variables 15
Number of runs 10

We were measuring three basic quantities:

Time elapsed for survival selection; We have computed the
amount of time not spent on survival selection for each run
of the original GDE3 algorithm. We named this quantity
baseline and subtracted it from the total elapsed time of
each corresponding run.

Cumulative number of domination comparisons; This is a
quite implementation-independent statistic. In this article
we described improvement of nondominated sorting, diver-
sity estimation and nearest individual search. This metric
will allow us to measure the isolated effect of nondominated
sorting improvement.

Number of comparisons in generation 500 ; Our method
exploits overnondomination. That is, its full strength is re-
vealed once the majority of individuals is nondominated.
At the start of the algorithm there are usually not many
nondominated individuals, even for many-dimensional prob-
lems. We use this quantity to measure the peak performance
of the proposed method.

Furthermore for each experiment for each statistic we shall
mark in bold the best result.

6.2 Reference individual selection
First let us look at various strategies to select the refer-

ence individual. In Table 5 we provide the average results of
10 runs with the DTLZ1[4] problem with a population size
of 1000 individuals. The Defeatist strategy means finding
the approximate nearest neighbor according to the K-d tree.
The Euclidean, Manhattan and Maximum mean choos-
ing the reference individual to be the nearest neighbor to
the trial with respect to the corresponding metric. Target
means choosing the target vector as the reference individual.
Normal means the original algorithm using fast nondomi-
nated sorting[3] and baseline means the time to execute all
non selection-related activities.

Table 5: Comparison of various strategies
Time elapsed for survival selection (seconds)

objectives 3 4 5 6 7 8
Defeatist 12.5 19.0 35.4 65.8 101.2 143
Euclidean 18.6 27.8 48.1 79.9 119.7 149
Manhattan 15.4 27.0 53.2 89.3 131.5 161
Maximum 12.6 19.5 36.7 65.4 104.9 143
Target 24.3 35.9 50.5 57.4 69.0 82
Normal 107.3 163.4 259.7 333.8 423.8 444
baseline 3.8 3.6 3.8 3.8 3.7 3.0

Cumulative domination comparisons (millions)

Defeatist 254 194 182 238 333 429
Euclidean 253 189 173 207 273 333
Manhattan 252 187 169 196 256 311
Maximum 252 189 179 219 294 364
Target 333 294 277 292 341 395
Normal 1314 1463 1615 1778 1948 2130

Domination comparisons in generation 500 (thousands)

Defeatist 9 58 137 229 330 407
Euclidean 9 54 126 195 252 304
Manhattan 8 50 121 184 237 286
Maximum 8 52 130 206 273 337
Target 99 163 227 277 325 370
Normal 1309 1457 1602 1758 1921 2115



By looking at the baseline data, we see that selection for
survival is indeed the bottleneck for all configurations.

We also see that even though the Manhattan strategy
yields the smallest reference sets and hence the lowest num-
ber of cumulative domination comparisons, it is slower than
the Defeatist strategy or the Target strategy. The cost of
computing the exact nearest individual is too high.

Comparing the Defeatist and the Target strategies, we see
that the Defeatist produces consistently smaller reference
sets, resulting in less domination comparisons up until 7
objectives. However, the cost of maintaining the K-d tree
weights the Defeatist strategy down at 6 objectives.

It is surprising that for each strategy, the number of cumu-
lative comparisons decreases from 3 until 5 objectives. We
found out that this was due to insufficient number of non-
dominated individuals in the population. For 3 objectives it
took 216 generations until there were more than N nondom-
inated individuals. The algorithm had to fall back to fast
nondominated sorting for the dominated part of the popu-
lation. The overnondomination did not strike soon enough.

6.3 Small and medium populations
In Table 6, we compare the times of the most ambitious

strategies from the previous experiments, that is Target and
Defeatist. We examine population sizes from 100 to 1000.
We present the data for the WFG9[5] problem. In order to
save space, we present only the ratios of the results for the
original and our proposed method.

Table 6: WFG9 Time elapsed for survival selection
Normal / Target

N M = 3 4 5 6 7

100 7.551 6.044 5.737 8.483 7.188
200 3.888 4.218 3.854 3.313 3.851
300 8.320 5.189 4.159 4.073 3.846
500 17.901 14.731 10.556 8.472 6.856
1000 9.224 9.680 7.771 7.576 9.222

Normal / Defeatist

100 3.032 3.200 2.263 1.865 1.660
200 5.445 4.823 3.688 2.987 2.609
300 10.819 6.752 4.600 3.798 3.391
500 15.548 10.909 6.987 4.916 4.146
1000 15.769 11.748 7.836 6.434 5.130
β 1.23 1.50 1.57 1.60 1.73

The elapsed times for the Defeatist strategy can be reli-
ably approximated by a power curve of type y = αNβ using
least squares. The data for the Target strategy does not
seem approximable by such a curve. For each number of
objectives, we present the exponent β. We do this also for
Table 8.

The Defeatist strategy performed well for low dimension-
ality and high number of individuals. This reflects the prop-
erties of the K-d tree. When we look at the cumulative
domination comparisons ratios in Table 7, we see that the
Defeatist strategy produced smaller reference sets in all con-
figurations up to 6 objectives, but achieved better speed only
in some of those configurations. This is attributed to the
cost of the K-d tree.

For a fixed number of objectives, the ratio increases with

Table 7: WFG9 Cumulative domination compar-
isons

Normal / Target

N M = 3 4 5 6 7
100 12.23 9.05 7.28 6.55 6.02
200 13.30 12.07 8.66 7.09 6.12
300 15.84 12.20 8.73 7.14 6.04
500 16.17 12.47 8.89 7.18 6.20
1000 15.62 12.56 9.04 7.25 6.18

Normal / Defeatist

100 44.04 16.56 9.61 6.74 5.46
200 53.34 21.46 10.77 7.26 5.63
300 60.58 23.06 11.32 7.51 5.67
500 63.09 25.42 12.11 7.91 5.88
1000 62.16 28.91 13.59 8.55 6.16

increasing population. Unfortunately, for increasing number
of objectives, the ratio decreases.

Table 8: WFG9 Domination comparisons in genera-
tion 500

Normal / Target

N M = 3 4 5 6 7
100 12.458 8.866 7.437 6.798 6.160
200 13.946 12.312 9.295 7.349 6.415
300 17.651 12.433 9.123 7.434 6.368
500 17.978 12.731 8.993 7.127 6.299
1000 18.132 13.354 9.288 7.365 6.360
β 1.83 1.85 1.94 1.99 2.006

Normal / Defeatist

100 48.695 17.195 10.077 6.436 5.690
200 64.091 22.810 11.336 7.585 5.846
300 82.248 24.656 11.704 7.616 5.791
500 94.016 26.712 12.303 7.899 6.003
1000 121.496 31.034 14.039 8.712 6.345
β 1.62 1.77 1.88 1.90 1.97

The estimates of β in Table 8 shed some light on the
unknown function g from section 5.2. αNβ is an estimate of
the number of domination comparisons in one generation,
which was theoretically estimated to be MNg (N). This
means that g (N) ≈ γNβ−1.

We have run the same configurations with the DTLZ1
problem and the results were very similar to that of WFG9,
with the exception that the Target strategy was always sub
quadratic.

6.4 10000 individuals
We conclude our experiments section with results for 10000

individuals. Because of the extreme time cost of computing
such experiments (see Tables 9 and 10) each run was com-
pleted only once. Let us look at the DTLZ1 problem.

Again we measure time ratios and for illustration in the
last row you can find the time it takes to complete the run
on a desktop computer. The Manhattan strategy is the
fastest for 3 and 4 objectives. The dimensionality is low
enough to allow the K-d tree to find the nearest individual



very quickly. For higher dimensions the cost of finding exact
nearest neighbor outweighs the benefits gained from finding
a quality reference individual.

Table 9: DTLZ1 Normal / Improved
Time elapsed

M 3 4 5 6 7
Maximum 11.63 14.15 10.79 8.93 7.00
Target 3.41 3.87 3.91 4.21 6.08
Manhattan 21.81 20.59 9.66 7.30 6.00
Defeatist 11.05 14.06 11.40 9.95 7.97
Normal(hours) 12.7 17.9 24.8 34.3 44.3

Domination comparisons in generation 500

Maximum 337.80 44.42 14.39 7.82 5.73
Target 12.75 9.50 6.75 5.35 4.97
Manhattan 338.17 45.92 15.21 8.43 6.28
Defeatist 294.34 41.33 14.78 8.36 6.16

Using fast nearest neighbor strategies results in abysmally
smaller reference sets for small number of objectives.

The results for WFG9 seem to be very similar to those
for DTLZ1. The gain from generating small reference sets
outweighs the cost of maintaining a K-d tree.

Table 10: WFG9 Normal / Improved
Time elapsed

M 3 4 5 6 7
Target 8.62 9.31 12.56 10.03 6.58
Defeatist 134.9 75.98 49.94 17.50 9.65
Normal(hours) 37.9 48.5 89 95.7 80.6

Domination comparisons in generation 500

Target 18.17 14.03 10.02 7.74 6.28
Defeatist 313.1 54.4 20.8 11.2 7.7

7. CONCLUSION
We have provided methods to improve the nondominated

sorting and diversity estimation procedures using the oth-
erwise dreaded overnondomination to our advantage.

We used a special data structure to hold the nondomi-
nated individuals and rather than performing nondominated
sorting, we concentrated on efficiently updating this struc-
ture. This led us surprisingly to the nearest neighbor search
problem. We handled this using various approaches based
on a well known data structure (K-d tree).

Our results show that a speedup of about 3 times is easily
achievable in most cases. For big populations a more than
100 fold increase in speed is possible.

The complexity of our nondominated sorting seems to be
sub quadratic in the number of individuals and quadratic
in the number of objectives. Our algorithm outperforms
the fast nondominated sorting even for small populations
and high number of objectives, which is not the case for
Jensen’s method. However it can be used only with DE
algorithms or algorithms which change the population one
individual at a time. Our method takes advantage of the
overnondomination and therefore is intended for problems

susceptible to this phenomenon (such as problems with 3 or
more objectives).

There is space for future work in the exploration of pos-
sibilities to generalize our method to algorithms other than
DE. Also, there may be data structures for the approximate
and exact nearest problem, which are more suitable than the
K-d tree for the problem at hand.
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[12] T. Robič and B. Filipič. DEMO: Differential evolution
for multiobjective optimization. Proc. Intl. conf. on
Evolutionary Multi-criterion optimization (EMO
2005), Springer, LNCS 3410, pages 520–533, 2005.


